Implementation and Evaluation of Moderate
Parallelism in the BIND9 DNS Server

JINMEI, Tatuya/ Toshiba
Paul Vixie/ Internet Systems Consortium

[Supported by SCOPE of the Ministry of Internal Affairs
and Communications, Japan.]

June 2006 | Usenix Annual Technical Conference

Contents

Background: BIND9's poor performance with threads

Solution
Identifying bottlenecks
Eliminating bottlenecks
Memory management
Faster operations on reference counters
Efficient rwlock

Evaluation
Root/Cache server cases

Conclusion/future work

Background

BIND9: widely used DNS server implementation
Richer functionality: DNS Security, better support for IPv6

BIND9's problem: poor performance
thread support doesn’t benefit from multiple CPUs
often run with threads slower than old version (BIND8)
=> may hinder deployment of the new functionality

Our goal: improve BIND9'’s response performance with threads
Authoritative, Caching, with or without dynamic updates
Performance measure: # of max queries processed w/o loss

Quantitive goal
add 50% of 1-CPU query rate for every additional CPU
(if BIND9 can operate 80% as fast as BINDS, it will outperform
BIND8 with two CPUs)

BIND9 Implementation Architecture

In-memory DNS database

Worker threads (up to # of CPUs) process queries
Use pthread locks for thread synchronization

database

Profiling: measured overhead of acquiring
locks

¢ Target
© AMD Opteron x 4 + SuSE Linux 9.2 (kernel 2.6.8)
© Configured as "F-root" server
® Method
© Sent various queries, collected wait period for acquiring each lock

gettinmeofday(tl);
pt hr ead_nut ex_I ock();
gettimeof day(t2);

® wait period = t2 - t1
¢ Analyze
© Dumped the entire result
© Identified dominant locks in the source code

Profiling Results

© 43.3% of total running time was occupied for waiting for acquiring locks
© Of the waiting period:
® 54.0% were for memory management in building responses
24.2% were for incr/decr of reference counters

11.4% were for contentions in DNS DB access
10.4% were in BIND9’s internal rwlock implementation

[others
W memory
management

[refcount
[]DB access
M rwiock

Eliminating Bottlenecks 1: memory manage-
ment

Problem: contentions in memory management for response packets
In a BIND9 subroutine and in the malloc()/free() libraries
Solution
Enable internal memory allocator with memory pool
Separating work space for each thread
it's temporary data and doesn’t have to be shared by threads

Worker
Threads

i il g Memory | | Memory
Context Context
Memory ‘ X
Context Y b
Bottleneck i

(frequently
called)

Worker
Threads

i ooy

L
i
(

Reusable 3 .
Memory (rarely (rarely (rarely
Pool called) called) called)
k1
malloc()/free()

Eliminating Bottlenecks 2: operations on
counters

Problem

So many operations on reference counters
each protected by a pthread lock, causing contentions

=> operation is pretty simple: incrementing/decrementing
integers

Solution
Atomic operations without locks

Using dedicated HW instruction or other primitives + busy loop
x86/AMD: xadd instruction
Sparc/Itanium: compare-and-swap(CAS) + busy loop
PowerPC/Alpha: locked load + store conditional + busy loop

Eliminating Bottlenecks 3: efficient rwlock
for DB access

Problem: lock contentions in DNS DB access
Even though it's read-only in most cases
Why didn’t rwlock help?
1. cannot use it due to write operations on reference counters
2. custom version of rwlock (for fairness) that depends on
pthread locks
Solution
Implementing more efficient rwlocks
use rwlocks wherever appropriate
in a more effective way (next slide)
Based on Mellor-Crummy’s algorithm
use some atomic ops on a 32-bit integer
make concurrent readers run fast
ensure fairness using pthread locks (should be rare)
Using dedicated HW instructions or other primitives + busy loop
e.g., Xx86/AMD: xadd/cmpxchg instructions

Efficient Rwlock + Atomic Counter Ops

Original Implementation

pt hr ead_nut ex_I| ock(dat a- >l ock); /* may bl ock */
dat a- >r ef count ++;

val ue = dat a->val ue;

pt hr ead_nut ex_unl ock(dat a- >l ock) ;

New Implementation

atom c_add(dat a->refcount); /* fast =/
read_| ock(data->l ock); /* usually fast =*/
val ue = dat a->val ue;

read_unl ock(dat a- >l ock) ;

Evaluation

Hardware/Software
AMD opteron 2GHz x 4, RAM 3.5GB

Broadcom BCM5704C Dual GbE
SuSE Linux 9.2(64bit)
kernel 2.6.8, glibc 2.3.3

BIND9(unpublished, to be 9.4), BIND 8.3.7
Server configurations
Emulated "F-root" server (as of October 2005)
Caching server
Large scale servers
"Dynamic" server
Evaluation procedure

Sent queries from external machines
measured max query rate responded without loss
using BIND9 queryperf

Evaluation Query Details

For the root configuration

used real query data to F-root (as of October 2005)
22.9% of queries were names under .BR
< 50% of queries were names under top 6 domains
=> should cause contentions in DB access
For the cache configuration

controlled cache hit rates with another external server
concentrated on the case with 80% hits
(number from statistics of an existing busy caching server)

External
server

Client
(tester)

Caching Server
(evaluation

20% of queries
involve external
lookups

80% of queries
hit cache

Evaluation results (root)

© BIND9(new): proportional to # of threads
© outperform BIND8 with 2 or more threads

© BIND9(old): does not benefit from multiple threads
® even worse than BIND8 with all available threads

70000 :
——————————— BIND8
—=— BINDY(old) |
60000 1 —— BIND9(new) e
2 - BIND9(new,target)
2 50000 | P 1
Q e
@ 40000 | |
o 30000 | . |
2 /'/_.———ﬂ—-
& 20000 | |
&
10000 -
0 L
1 2 3 4

Number of threads

Evaluation results (cache)

® Generally scaled well
® meet our quantitive goal
© Yet not fully satisfactory
® needed all 4 threads to outperform BIND8
© due to lower base performance (w/ single thread)

40000 /‘
35000 | = 1
» g
=]
S 30000 -
(%3
& 25000 |
& 20000 |
3
= 15000 F
)
O 10000 BIND8 - R
BIND9(old,thread) —=—
5000 BIND9(new,thread) ——
0 BIND9(new,thread target) -~
1 2 3 4

Number of threads

Other Results

Dynamic / large scale server performance
generally scaled well

Memory footprint
even smaller thanks to the internal allocator

Other scalable memory allocator (Hoard)
didn’t see much difference, but we need more experiments with a
larger number of CPUs

Rwlock performance variation
vary among OSes

Found and fixed FreeBSD kernel bottleneck due to unnecessary lock
will appear in FreeBSD 7.0

Conclusion / Future Work

Improved BIND9's response performance with multiple threads
Identified and eliminated synchronization overhead
Confirmed the effect with a 4-way machine
Should be applicable to other thread-based applications

Future work

Get feedback, improve implementation
now available as 9.4.0a5, being tested

Further evaluation
for a caching server with actual query pattern
other OSes, machine architectures
with a larger number of CPUs
effect of scalable memory allocator (e.g. Hoard)

	Contents
	Background
	BIND9 Implementation Architecture
	Profiling: measured overhead of acquiring locks
	Profiling Results
	Eliminating Bottlenecks 1: memory management
	Eliminating Bottlenecks 2: operations on counters
	Eliminating Bottlenecks 3: efficient rwlock for DB access
	Efficient Rwlock + Atomic Counter Ops
	Evaluation
	Evaluation Query Details
	Evaluation results (root)
	Evaluation results (cache)
	Other Results
	Conclusion / Future Work

