
Implementation and Evaluation of Moderate
Parallelism in the BIND9 DNS Server

JINMEI, Tatuya / Toshiba

Paul Vixie / Internet Systems Consortium

[Supported by SCOPE of the Ministry of Internal Affairs

and Communications, Japan.]

June 2006 | Usenix Annual Technical Conference

Contents

• Background: BIND9’s poor performance with threads
• Solution

• Identifying bottlenecks
• Eliminating bottlenecks

• Memory management
• Faster operations on reference counters
• Efficient rwlock

• Evaluation
• Root/Cache server cases

• Conclusion/future work

Background

• BIND9: widely used DNS server implementation
• Richer functionality: DNS Security, better support for IPv6

• BIND9’s problem: poor performance
• thread support doesn’t benefit from multiple CPUs
• often run with threads slower than old version (BIND8)
• => may hinder deployment of the new functionality

• Our goal: improve BIND9’s response performance with threads
• Authoritative, Caching, with or without dynamic updates
• Performance measure: # of max queries processed w/o loss
• Quantitive goal

• add 50% of 1-CPU query rate for every additional CPU
• (if BIND9 can operate 80% as fast as BIND8, it will outperform

BIND8 with two CPUs)

BIND9 Implementation Architecture

• In-memory DNS database
• Worker threads (up to # of CPUs) process queries

• Use pthread locks for thread synchronization

Profiling: measured overhead of acquiring
locks

• Target
• AMD Opteron x 4 + SuSE Linux 9.2 (kernel 2.6.8)
• Configured as "F-root" server

• Method
• Sent various queries, collected wait period for acquiring each lock

gettimeofday(t1);
pthread_mutex_lock();
gettimeofday(t2);

• wait period = t2 - t1
• Analyze

• Dumped the entire result
• Identified dominant locks in the source code

Profiling Results

• 43.3% of total running time was occupied for waiting for acquiring locks
• Of the waiting period:

• 54.0% were for memory management in building responses
• 24.2% were for incr/decr of reference counters
• 11.4% were for contentions in DNS DB access
• 10.4% were in BIND9’s internal rwlock implementation

Eliminating Bottlenecks 1: memory manage-
ment

• Problem: contentions in memory management for response packets
• In a BIND9 subroutine and in the malloc()/free() libraries

• Solution
• Enable internal memory allocator with memory pool
• Separating work space for each thread

• it’s temporary data and doesn’t have to be shared by threads

Eliminating Bottlenecks 2: operations on
counters

• Problem
• So many operations on reference counters

• each protected by a pthread lock, causing contentions
• => operation is pretty simple: incrementing/decrementing

integers
• Solution

• Atomic operations without locks
• Using dedicated HW instruction or other primitives + busy loop

• x86/AMD: xadd instruction
• Sparc/Itanium: compare-and-swap(CAS) + busy loop
• PowerPC/Alpha: locked load + store conditional + busy loop

Eliminating Bottlenecks 3: efficient rwlock
for DB access

• Problem: lock contentions in DNS DB access
• Even though it’s read-only in most cases
• Why didn’t rwlock help?

• 1. cannot use it due to write operations on reference counters
• 2. custom version of rwlock (for fairness) that depends on

pthread locks
• Solution

• Implementing more efficient rwlocks
• use rwlocks wherever appropriate
• in a more effective way (next slide)

• Based on Mellor-Crummy’s algorithm
• use some atomic ops on a 32-bit integer
• make concurrent readers run fast
• ensure fairness using pthread locks (should be rare)

• Using dedicated HW instructions or other primitives + busy loop
• e.g., x86/AMD: xadd/cmpxchg instructions

Efficient Rwlock + Atomic Counter Ops

• Original Implementation

pthread_mutex_lock(data->lock); /* may block */
data->refcount++;
value = data->value;
pthread_mutex_unlock(data->lock);

• New Implementation

atomic_add(data->refcount); /* fast */
read_lock(data->lock); /* usually fast */
value = data->value;
read_unlock(data->lock);

Evaluation

• Hardware/Software
• AMD opteron 2GHz x 4, RAM 3.5GB
• Broadcom BCM5704C Dual GbE
• SuSE Linux 9.2(64bit)

• kernel 2.6.8, glibc 2.3.3
• BIND9(unpublished, to be 9.4), BIND 8.3.7

• Server configurations
• Emulated "F-root" server (as of October 2005)
• Caching server
• Large scale servers
• "Dynamic" server

• Evaluation procedure
• Sent queries from external machines

• measured max query rate responded without loss
• using BIND9 queryperf

Evaluation Query Details

• For the root configuration
• used real query data to F-root (as of October 2005)

• 22.9% of queries were names under .BR
• < 50% of queries were names under top 6 domains
• => should cause contentions in DB access

• For the cache configuration
• controlled cache hit rates with another external server
• concentrated on the case with 80% hits

• (number from statistics of an existing busy caching server)

Evaluation results (root)

• BIND9(new): proportional to # of threads
• outperform BIND8 with 2 or more threads

• BIND9(old): does not benefit from multiple threads
• even worse than BIND8 with all available threads

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4

Q
u

er
ie

s
p

er
 s

ec
o

n
d

s

Number of threads

BIND8
BIND9(old)
BIND9(new)
BIND9(new,target)

Evaluation results (cache)

• Generally scaled well
• meet our quantitive goal

• Yet not fully satisfactory
• needed all 4 threads to outperform BIND8
• due to lower base performance (w/ single thread)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4

Q
u

er
ie

s
p

er
 s

ec
o

n
d

s

Number of threads

BIND8
BIND9(old,thread)

BIND9(new,thread)
BIND9(new,thread,target)

Other Results

• Dynamic / large scale server performance
• generally scaled well

• Memory footprint
• even smaller thanks to the internal allocator

• Other scalable memory allocator (Hoard)
• didn’t see much difference, but we need more experiments with a

larger number of CPUs
• Rwlock performance variation

• vary among OSes
• Found and fixed FreeBSD kernel bottleneck due to unnecessary lock

• will appear in FreeBSD 7.0

Conclusion / Future Work

• Improved BIND9’s response performance with multiple threads
• Identified and eliminated synchronization overhead
• Confirmed the effect with a 4-way machine
• Should be applicable to other thread-based applications

• Future work
• Get feedback, improve implementation

• now available as 9.4.0a5, being tested
• Further evaluation

• for a caching server with actual query pattern
• other OSes, machine architectures
• with a larger number of CPUs
• effect of scalable memory allocator (e.g. Hoard)

	Contents
	Background
	BIND9 Implementation Architecture
	Profiling: measured overhead of acquiring locks
	Profiling Results
	Eliminating Bottlenecks 1: memory management
	Eliminating Bottlenecks 2: operations on counters
	Eliminating Bottlenecks 3: efficient rwlock for DB access
	Efficient Rwlock + Atomic Counter Ops
	Evaluation
	Evaluation Query Details
	Evaluation results (root)
	Evaluation results (cache)
	Other Results
	Conclusion / Future Work

